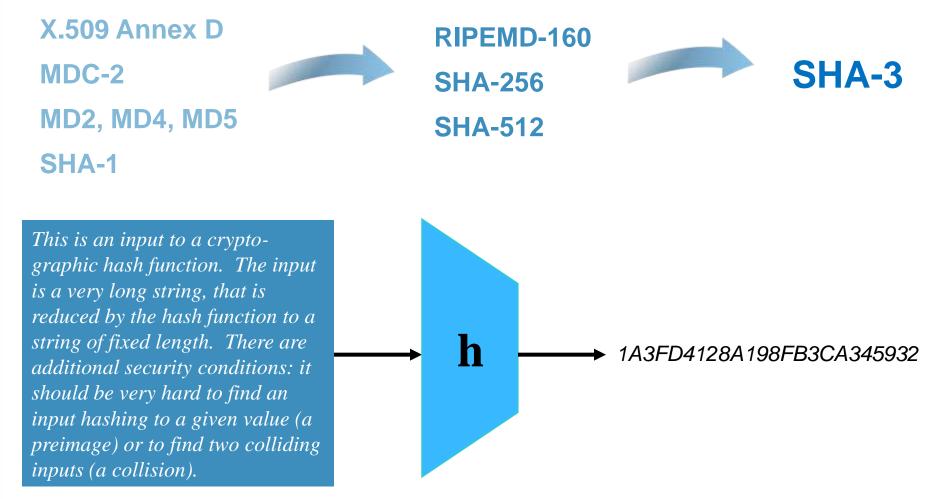


RSACONFERENCE2010

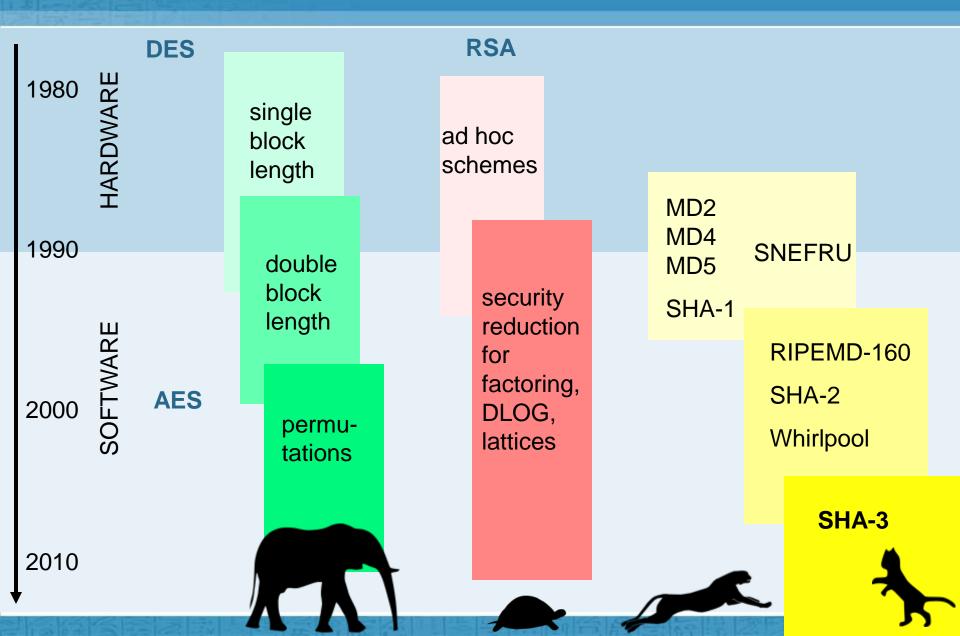

SECURITY DECODED

The First 30 Years of Cryptographic Hash Functions and the NIST SHA-3 Competition

Bart Preneel COSIC/Kath. Univ. Leuven (Belgium)

Session ID: CRYP-202 Session Classification: Hash functions decoded

Hash functions



RSACONFERENC

Hash function history 101

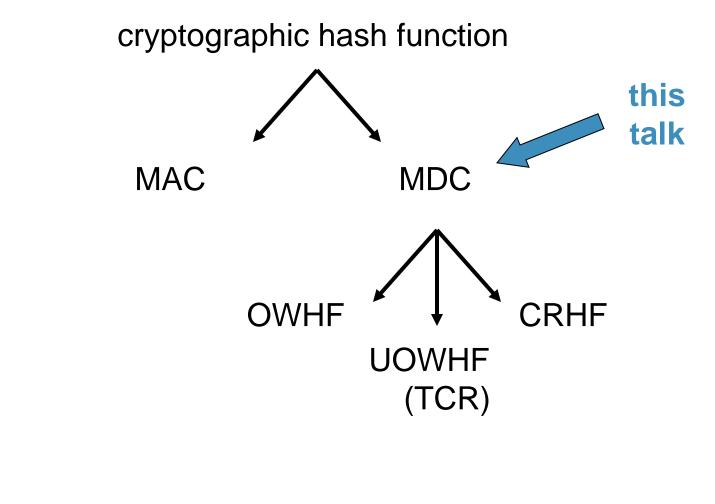
Applications

- digital signatures
- data authentication
- protection of passwords
- confirmation of knowledge/commitment
- micropayments
- pseudo-random string generation/key derivation
- construction of MAC algorithms, stream ciphers, block ciphers,...

Definitions

Iterations (modes)

Compression functions


SHA-{0,1,2,3}

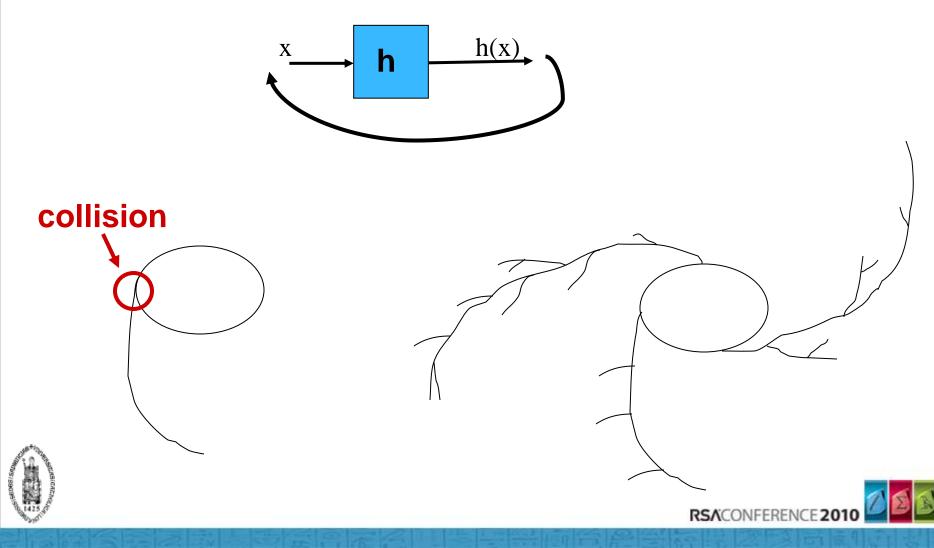
Bits and bytes

RSACONFERENCE 2

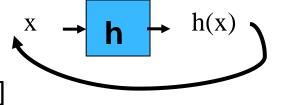
Security requirements (n-bit result)

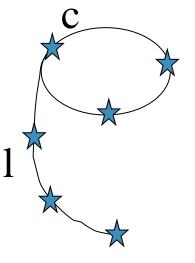
Informal definitions (1)

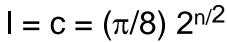
- no secret parameters
- input string x of arbitrary length ⇒ output h(x) of fixed bitlength n
- computation "easy"
- One Way Hash Function (OWHF)
 - preimage resistance
 - 2nd preimage resistance
- Collision Resistant Hash Function (CRHF): OWHF +
 - collision resistant



- Multiple target second preimage (1 out of many): if one can attack 2^t simultaneous targets, the effort to find a single preimage is 2^{n-t}
- Multiple target second preimage (many out of many):
 - time-memory trade-off with $\Theta(2^n)$ precomputation and storage $\Theta(2^{2n/3})$ time per (2nd) preimage: $\Theta(2^{2n/3})$ [Hellman'80]
 - full cost per (2nd) preimage from $\Theta(2^n)$ to $\Theta(2^{2n/5})$ [Wiener'02] (if $\Theta(2^{3n/5})$ targets are attacked)
- answer: randomize hash function: key, parameter, salt, spice,...




• Consider the functional graph of f



Brute force collision search

- Low memory and parallel implementation of the birthday attack [Pollard'78][Quisquater'89][Wiener-van Oorschot'94]
- Distinguished point (d bits)
 - $\Theta(e2^{n/2} + e 2^{d+1})$ steps with e the cost of one function evaluation
 - $\Theta(n2^{n/2-d})$ memory
 - full cost: $\Theta(e n 2^{n/2})$ [Wiener'02]

Brute force attacks in practice

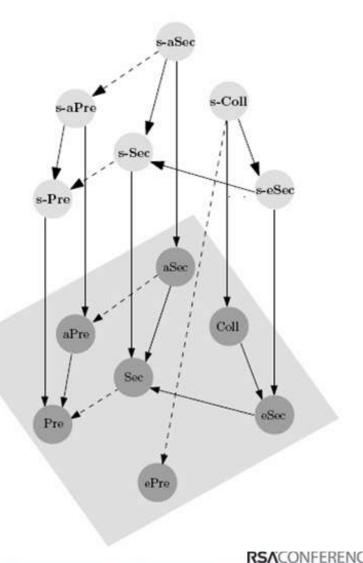
- (2nd) preimage search
 - n = 128: 23 B\$ for 1 year if one can attack 2⁴⁰ targets in parallel
- parallel collision search
 - n = 128: 1 M\$ for 12 hours (or 1 year on 60K PCs)
 - n = 160: 90 M\$ for 1 year
 - need 256-bit result for long term security (30 years or more)

Collision resistance

- hard to achieve in practice
 - many attacks
 - requires double output length 2^{n/2} versus 2ⁿ
- hard to achieve in theory
 - [Simon'98] one cannot derive collision resistance from "general" preimage resistance (there exists no black box reduction)
- hard to formalize: requires
 - family of functions: key, parameter, salt, spice,
 - "human ignorance" trick [Stinson'06], [Rogaway'06]

Can we get rid of collision resistance?

- UOWHF (TCR, eSec) randomize hash function after choosing the message [Naor-Yung'89]
 how to enforce this in practice?
- randomized hashing: RMX mode [Halevi-Krawczyk'05]
 H(r || x₁ ⊕ r || x₂ ⊕ r || ... || x_t ⊕ r)
 - needs e-SPR (not met by MD5 and SHA-1 reduced to 53 rounds)
 - issues with insider attacks (i.e. attacks by the signer)

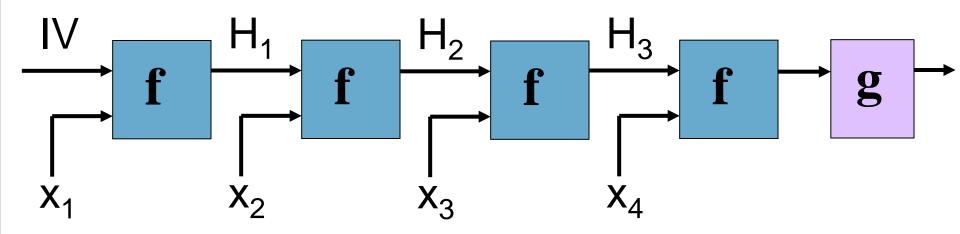


Relation between properties

[Rogaway-Shrimpton'04]

[Stinson'06]

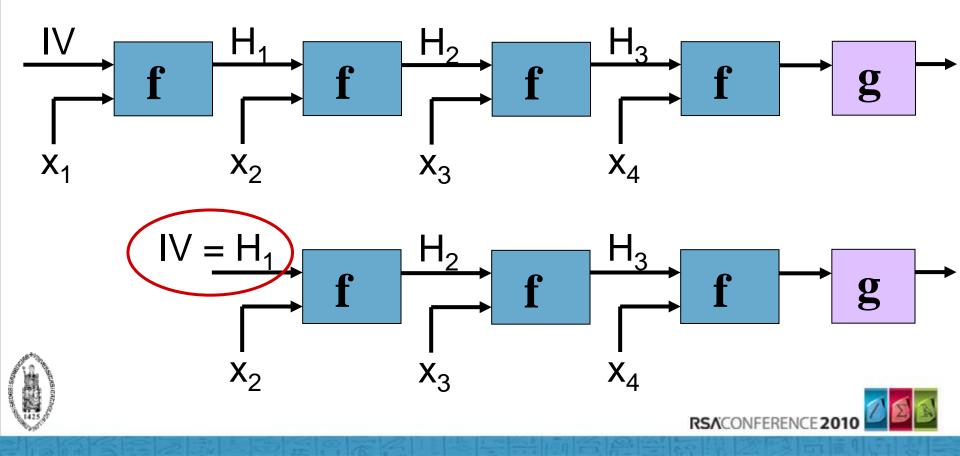
[Reyhanitabar-Susilo-Mu'10]


- Collision resistance is not always necessary
- Other properties are needed:
 - pseudo-randomness if keyed (with secret key)
 - near-collision resistance
 - partial preimage resistance
 - multiplication freeness
 - pseudo-random oracle property
- how to formalize these requirements and the relation between them?

Iteration (mode of compression function)

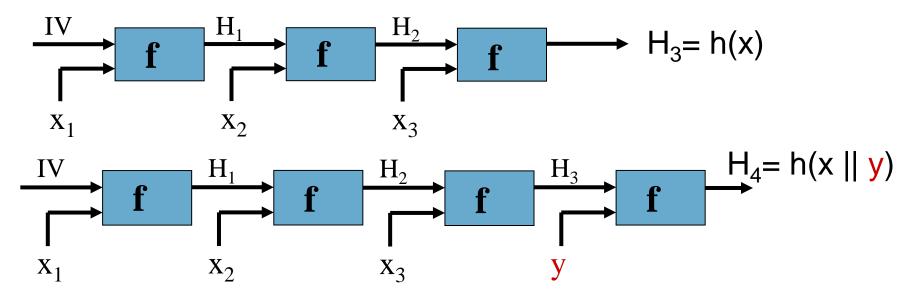
Hash function: iterated structure

Split messages into blocks of fixed length and hash them block by block with a compression function f

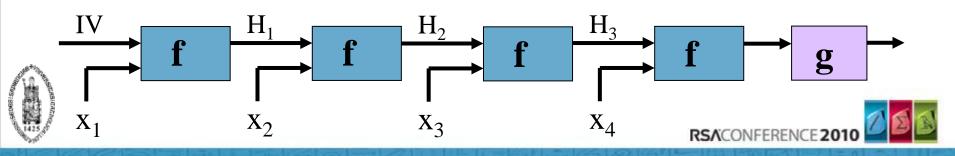

Efficient and elegant But ...

Security relation between f and h

- Iterating f can degrade its security
 - trivial example: 2nd preimage



- Solution: Merkle-Damgård (MD) strengthening
 - fix IV, use unambiguous padding and insert length at the end
- f is collision resistant ⇒ h is collision resistant [Merkle'89-Damgård'89]
- f is ideally 2nd preimage resistant ⇔ h is ideally 2nd preimage resistant [Lai-Massey'92]
 - few hash functions have a strong compression function
 - very few hash functions treat x_i and H_{i-1} in the same way



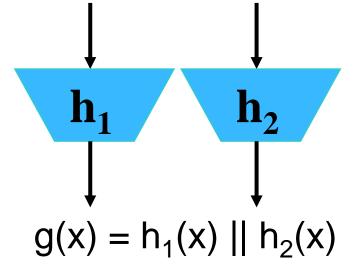
Length extension: if one knows h(x), easy to compute h(x || y) without knowing x

Solution: output transformation

Security relation between f and h (4)

- MD with output transformation preserves pseudo-random oracle (PRO) property [Coron+05]
- MD with envelope method h(K || x || K) works for pseudorandomness/MAC [Bellare-Cannetti-Krawczyk'96]
 - but there are some problems and HMAC is a better construction
- MD preserves Preimage Awareness [Dodis-Ristenpart-Shrimpton'09]
 Property "in between" CR (collision resistance) and PRO
- MD does not work for UOWHF [Bellare-Rogaway'97]

- multi-collision attack and impact on concatenation [Joux'04]
 - the concatenation of 2 iterated hash functions (g(x)= h₁(x) || h₂(x)) is as most as strong as the strongest of the two (even if both are independent)
 - cost of collision attack against g at most n1 . $2^{n2/2} + 2^{n1/2} << 2^{(n1 + n2)/2}$
- long message 2nd preimage attack [Dean-Felten-Hu'99], [Kelsey-Schneier'05]
 - if one hashes 2^t message blocks with an iterated hash function, the effort to find a second preimage is only 2^{n-t+1} + t 2^{n/2+1}
 - appending the length does not help here!
- herding attack [Kelsey-Kohno'06]
 - reduces security of commitment using a hash function from 2ⁿ
 - on-line 2^{n-t} + precomputation $2 \cdot 2^{(n+t)/2}$ + storage 2^t



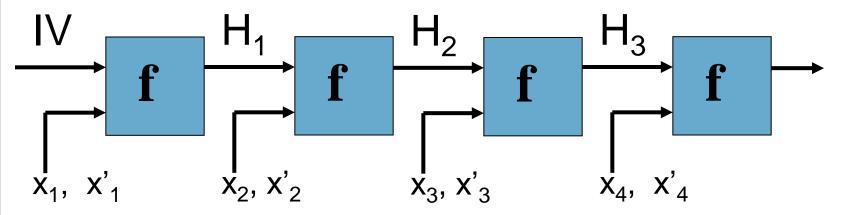
RSACONFERENC

How (NOT) to strengthen a hash function? [Joux'04]

- Answer: concatenation
- h₁ (n1-bit result) and h₂ (n2-bit result)

- Intuition: the strength of g against collision/(2nd) preimage attacks is the product of the strength of h₁ and h₂

But....

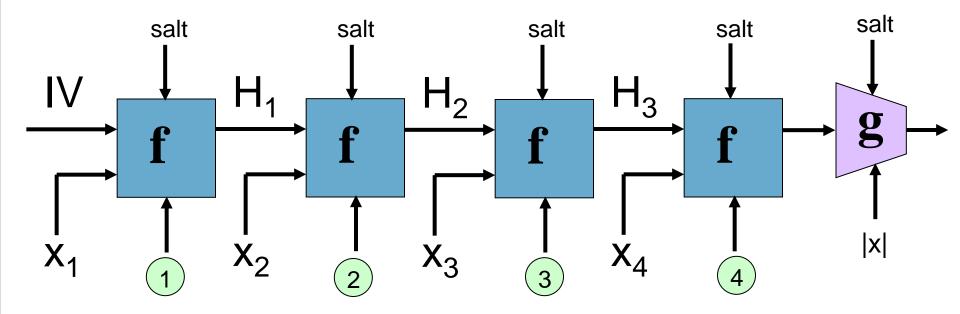

Consider h_1 (n1-bit result) and h_2 (n2-bit result), with n1 \ge n2.

Concatenation of 2 iterated hash functions $(g(x)=h_1(x) || h_2(x))$ is as most as strong as the strongest of the two (even if both are independent)

- Cost of collision attack against g at most n1. $2^{n2/2} + 2^{n1/2} << 2^{(n1 + n2)/2}$
- Cost of (2nd) preimage attack against g at most n1 . $2^{n2/2} + 2^{n1} + 2^{n2} << 2^{n1 + n2}$
- If either of the functions is weak, the attacks may work better.
- Main observation: finding multiple collisions for an iterated hash function is not much harder than finding a single collision (if the size of the internal memory is n bits)

Multi-collisions (2) [Joux '04]

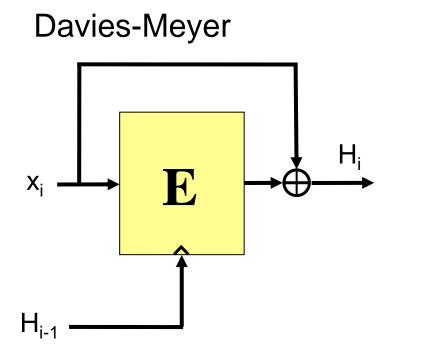
- For IV: collision for block 1: x₁, x'₁
- For H₁: collision for block 2: x₂, x'₂
- For H_2 : collision for block 3: x_3 , x'_3
- For H_3 : collision for block 4: x_4 , x'_4
- Now $h(x_1||x_2||x_3||x_4) = h(x_1'||x_2||x_3||x_4) = h(x_1'||x_2'||x_3||x_4) = h(x_1'||x_2'||x_3||x_4)$ = $h(x_1'||x_2'||x_3'||x_4')$ a 16-fold collision

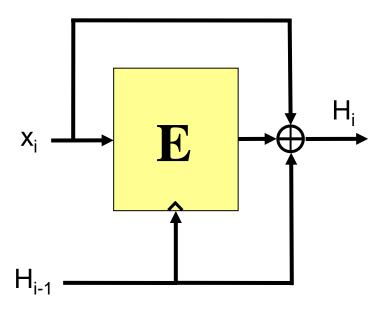


- degradation with use: salting (family of functions, randomization)
- extension attack + PRO preservation: strong output transformation g (which includes total length and salt)
- long message 2nd preimage: preclude fix points
 - counter $f \rightarrow f_i$ [Biham-Dunkelman]
- multi-collisions, herding: avoid breakdown at 2^{n/2} with larger internal memory: known as wide pipe
 - e.g., extended MD4, RIPEMD, [Lucks'05]

RSACONF

salt + output transformation + counter + wide pipe

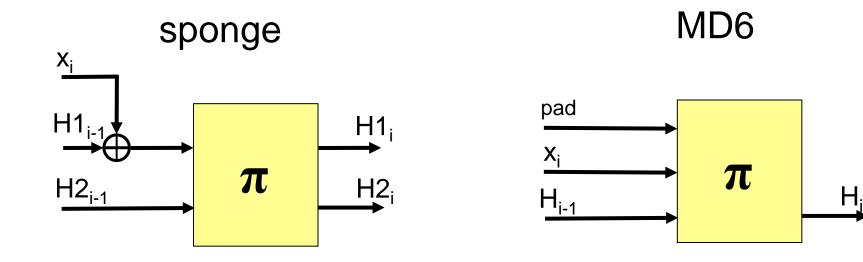

many more results on property preservation



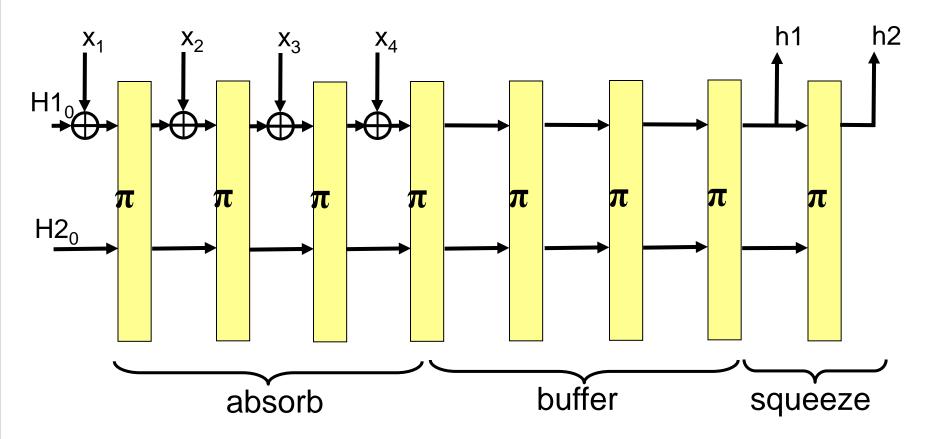
Compression functions

Block cipher (E_K) based

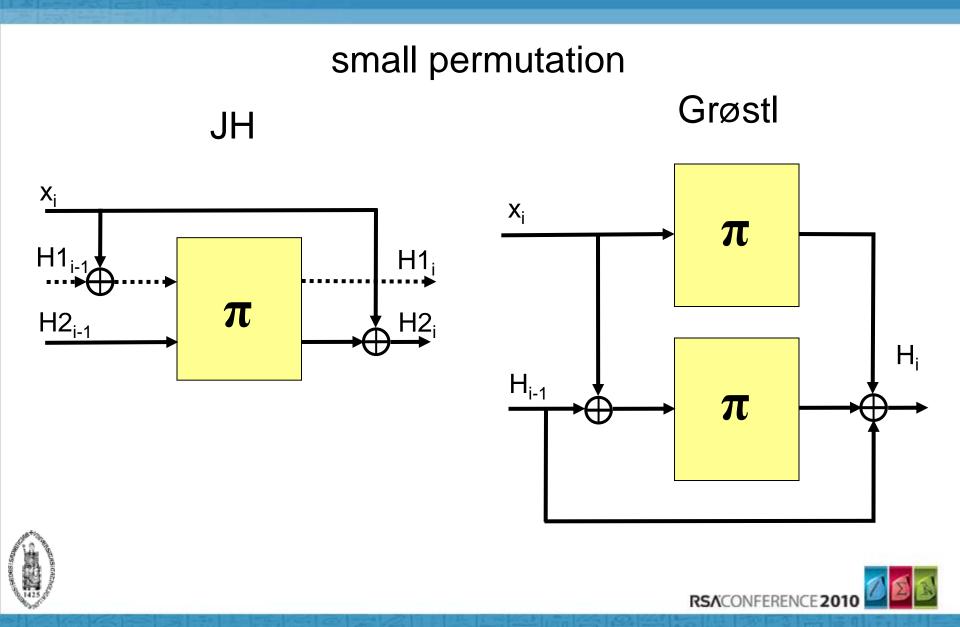
Miyaguchi-Preneel

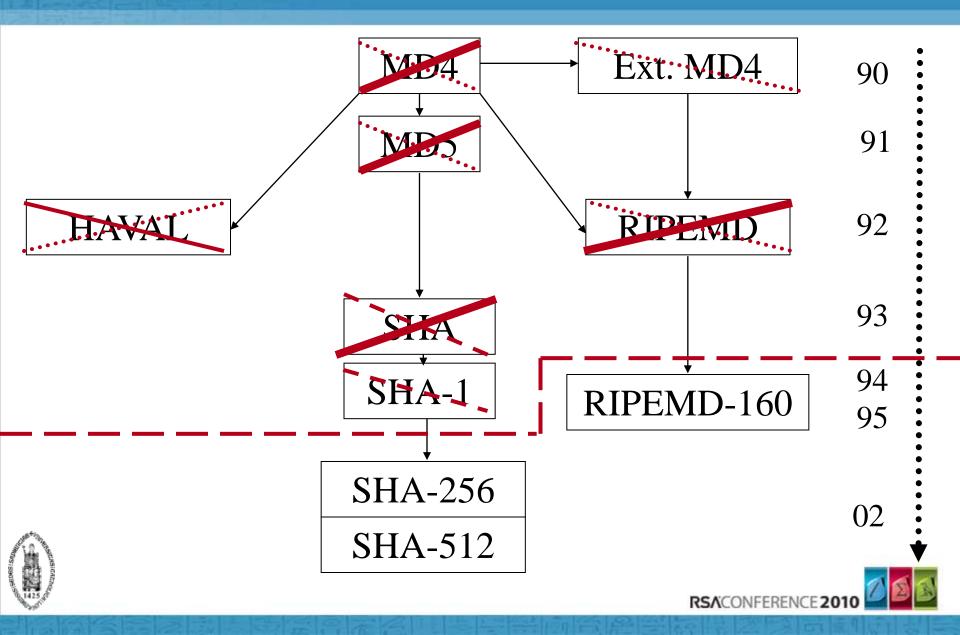

RSACONF

- output length = block length
- 12 secure compression functions in ideal cipher model
- requires 1 key schedule per encryption

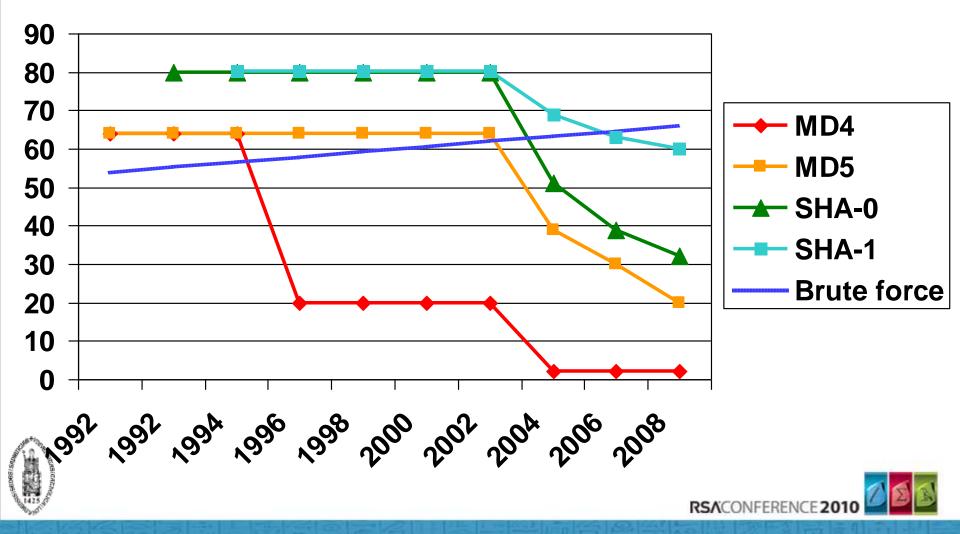

Large permutation

Permutation (π) based: sponge

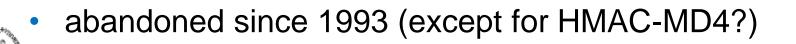

Examples: Panama, RadioGatun, Grihndahl, Keccak


RSACONFERENC

Permutation (π) based



MDx-type hash function history


Brute force: 1 million PCs or US\$ 100 000 hardware

MD4 [Rivest'90]

• 3 rounds (48 steps)

- collisions for 2 rounds [Merkle'90, denBoerBosselaers'91]
- collisions for full MD4 in 2²⁰ steps [Dobbertin'96]
- (second) preimage for 2 rounds [Dobbertin'97]
- collisions for full MD4 by hand [Wang+'04]
- practical preimage attack for 1 in 2⁵⁶ messages [Wang+'05]

MD5 [Rivest'91]

- 4 rounds (64 steps)
- pseudo-collisions [denBoer-Bosselaers'93]
- collisions for compression function [Dobbertin'96]
- collisions for hash function
 - [Wang+'04] 15 minutes
 - ...
 - [Stevens+'09] milliseconds
 - brute force (2⁶⁴): 1M\$ 10 hours in '09
- 2nd preimage in 2¹²³ [Sasaki-Aoki'09]

MD5

- Advice (RIPE since '92, RSA since '96): stop using MD5
- Largely ignored by industry until 2009 (click on a cert...)

Certificate		? X
General Details Certification	Path	
Chaun ErAlls		
Show: <a>All>		
Field	Value	<u> </u>
E Version	V9	
Serial Number	3C36 1D05 ED01 5377 934C 4	
Signature Algorithm	md5RSA	_
Issuer	www.verisign.com/CPS Incorp	
	Wednesday, June 04, 2003 1:0 Saturday, June 04, 2005 12:59:	
E Subject	www.verisign.com, Terms of us	
E Public Key	RSA (1024 Bits)	-
		- 1
	Edit Properties Copy to File	
	ОК	
	UK	

RSACONFERENCE 20

SHA(-0) [NIST'93]

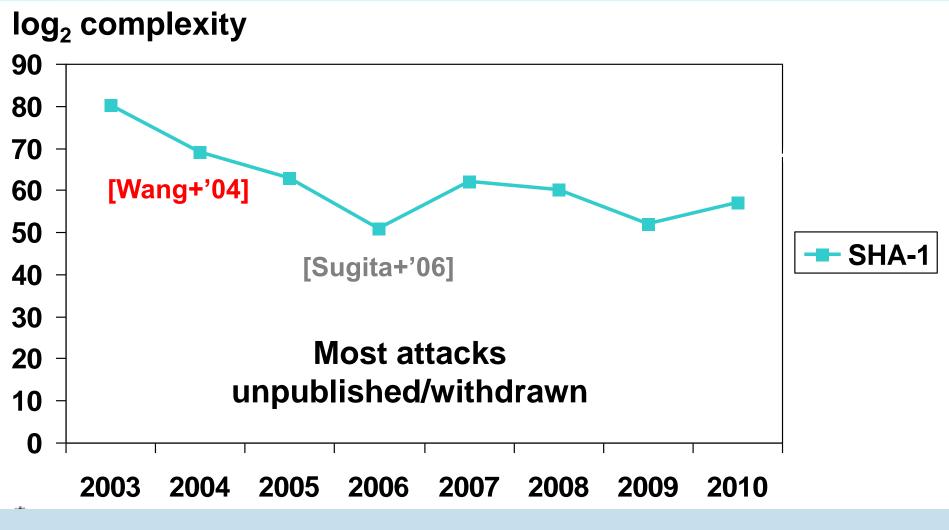
- now called SHA-0, because of '94 of publication SHA-1
- very similar to MD5:
 - 16 extra steps (from 64 to 80)
 - message expansion uses bitwise code rather than repetition

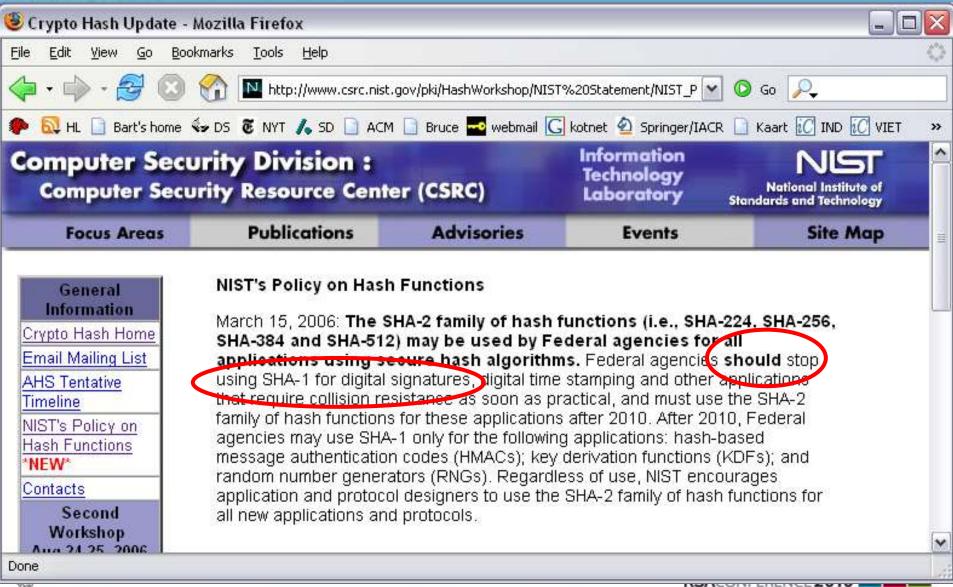
 $w_{j} \leftarrow (w_{j-3} \oplus w_{j-8} \oplus w_{j-14} \oplus w_{j-16}) \ j{>}15$

- quasicyclic code with $d_{min} = 23$
- 1994: withdrawn by NIST for unidentified flaw
- 2004: collisions for in 2⁵¹ [Joux+'04]
- 2005: collisions in 2³⁹ [Wang+'05]
- 2007: collisions in 2³² [Joux+'07]
- 2008: collisions in 1 hour [Manuel-Peyrin'08]
- 2008: preimages for 52 of 80 steps in 2^{156.6} [Aoki-Sasaki'09]

SHA-1 [NIST'95]

- fix to SHA-0
- add rotation to message expansion: quasicyclic code, $d_{min} = 25$ $W_i \leftarrow (W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}) >>> 1 \quad j > 15$
 - 53 steps [Oswald-Rijmen'04 and Biham-Chen'04]
- collisions 58 steps [Wang+'05]
 - 64 steps in 2³⁵ highly structured [De Cannière-Rechberger'06-'07]:
 - 70 steps in 2⁴⁴ highly structured [De Cannière-Rechberger'06-'07]:
 - 70 steps 2³⁹ (4 days on a PC) [Joux-Peyrin'07]
 - 2⁶⁹ [Wang+'05]
 - 2⁶³ ? [Wang+'05 unpublished]
 - 2⁵¹ ? [Sugita+'06]
 - 2⁶² ? [Mendel+'08 unpublished]
 - 2⁵² ?? [McDonald+'09 unpublished]


preimages for 48/80 steps in 2^{160-ε} [Aoki-Sasaki'09]


RSACONFERENC

SHA-1

Prediction: collision for SHA-1 in the next 12-18 months

NIST and SHA-1

- collisions for MD5, SHA-0, SHA-1
 - 2 messages differ in a few bits in 1 to 3 512-bit input blocks
 - limited control over message bits in these blocks
 - but arbitrary choice of bits before and after them

- what is achievable for MD5?
 - 2 colliding executables/postscript/gif/...[Lucks-Daum'05]
 - 2 colliding RSA public keys thus with colliding X.509 certificates [Lenstra+'04]
 - chosen prefix attack: different IDs, same certificate [Stevens+'07]
 - 2 arbitrary colliding files (no constraints) in 12 hours for 1 M\$

Rogue CA attack [Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvi<u>k-de Weger '08]</u>

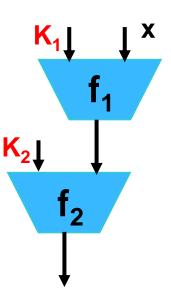
 request user cert; by special Self-signed root key collision this results in a fake CA cert (need to predict serial number + validity period) CA2 CA1 impact: **rogue CA** that User1 User2 can issue certs that are trusted by all browsers

• 6 CAs have issued certificates signed with MD5 in 2008:

 Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC TrustCenter AG, RSA Data Security, Verisign.co.jp

- digital signatures: only an issue if for nonrepudiation
- none for signatures computed before attacks were public (1 August 2004)
- none for certificates if public keys are generated at random in a controlled environment
- substantial for signatures after 1 August 2005 (cf. traffic tickets in Australia)

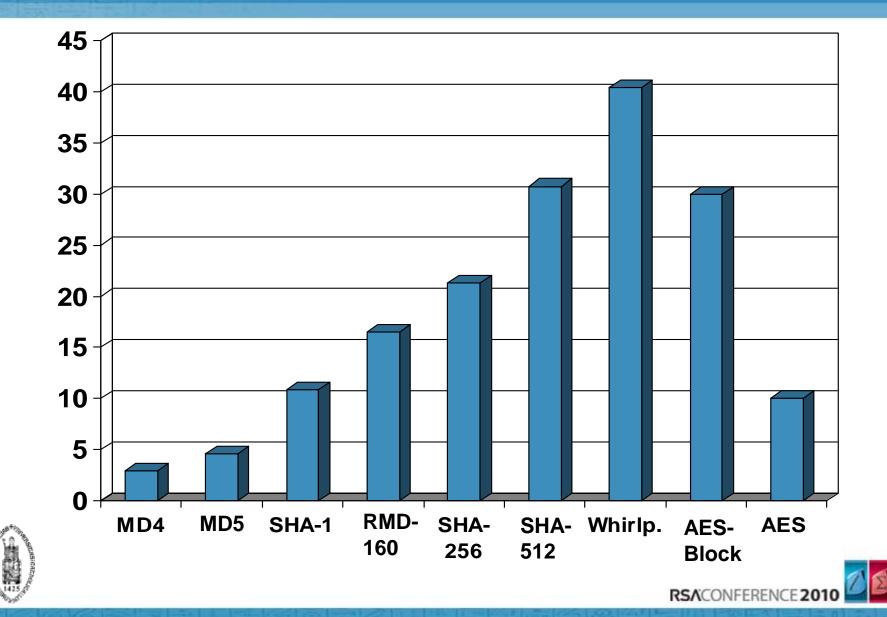
- security degrades with number of applications
- for large messages even with the number of blocks (cf. supra)
- specific results:
 - MD2: 2⁷³ [Knudsen+09]
 - MD4: 2¹⁰² [Leurent'08]
 - MD5: 2¹²³ [Sasaki-Aoki'09]
 - SHA-0: 52 of 80 steps in 2^{156.6} [Aoki-Sasaki'09]
 - SHA-1: 48 of 80 steps in 2^{159.3} [Aoki-Sasaki'09]



- HMAC keys through the IV (plaintext)
 - collisions for MD5 invalidate current security proof of HMAC-MD5

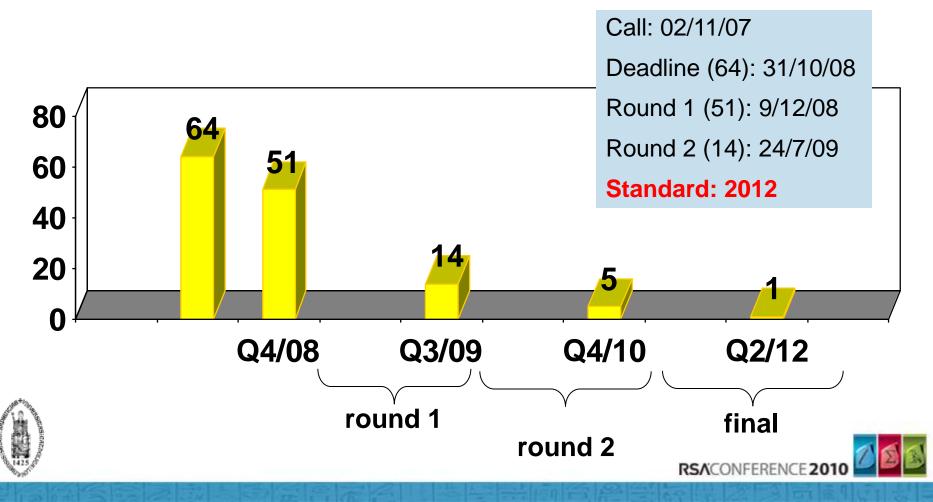
	Rounds in f2	Rounds in f1	Data complexity
MD4	48	48	2 ⁷² CP + 2 ⁷⁷ time
MD5	64	33 of 64	2 ^{126.1} CP
MD5	64	64	2 ⁵¹ CP & 2 ¹⁰⁰ time (RK)
SHA-0	80	80	2 ¹⁰⁹ CP
SHA-1	80	53 of 80	2 ^{98.5} CP

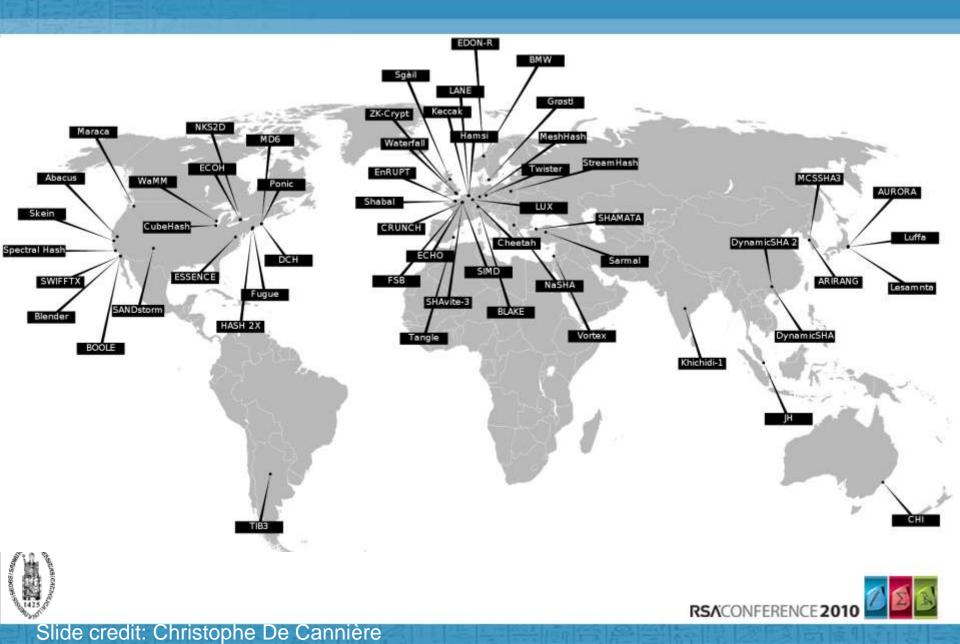
- Upgrading algorithms is always hard
- TLS uses MD5 || SHA-1 to protect algorithm negotiation
- Upgrading negotiation algorithm is even harder: need to upgrade TLS 1.1 to TLS 1.2


SHA-2 [NIST'02]

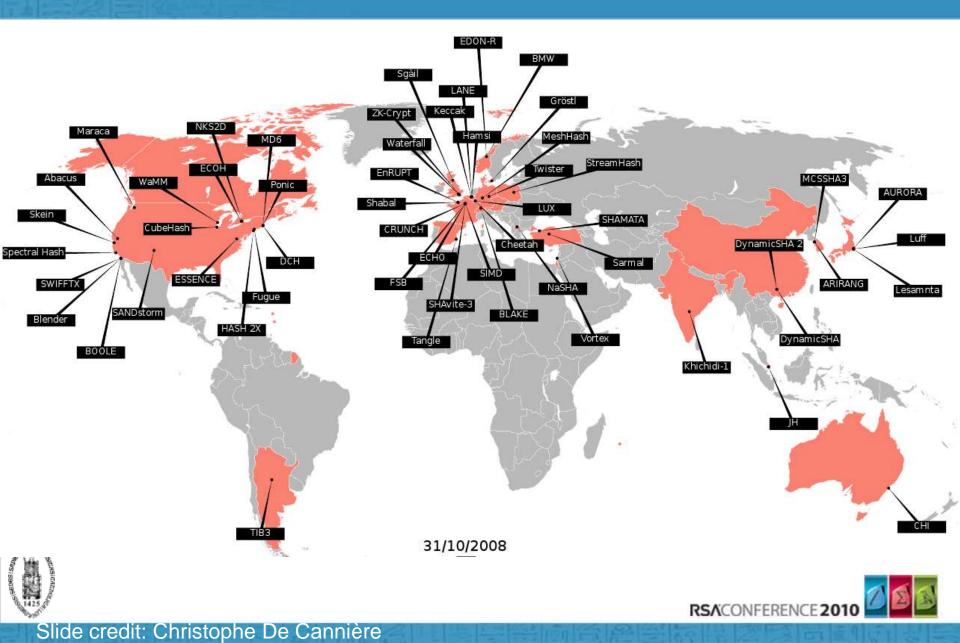
• SHA-224, SHA-256, SHA-384, SHA-512

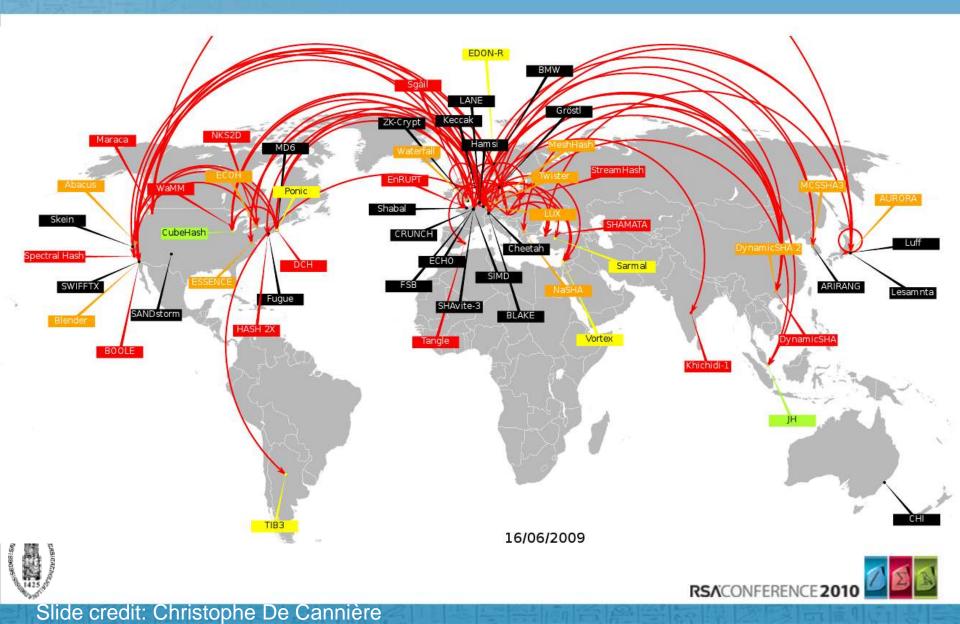
- non-linear message expansion
- more complex operations
- 64/80 steps
- SHA-384 and SHA-512: 64-bit architectures
- SHA-256 collisions: 24 steps [Sanadhya-Sarkar'08]
- SHA-256 preimages: 43/64 steps [Aoki+'09]
- implementations today faster than anticipated
- adoption
 - industry may migrate to SHA-2 by 2011 or may wait for SHA-3
 - very slow for TLS/IPsec (no pressing need)

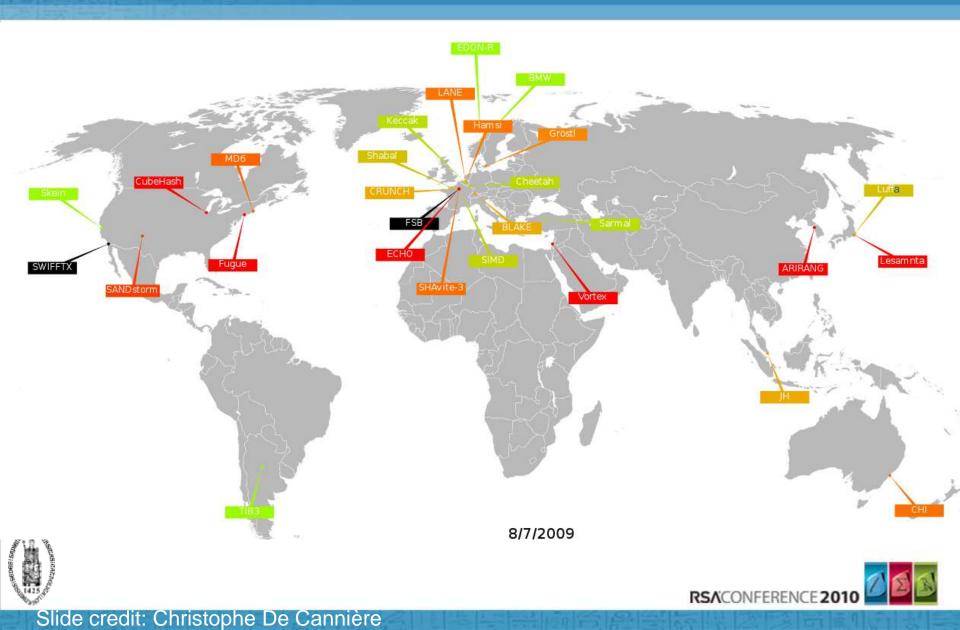

Performance of hash functions - Bernstein (cycles/byte) AMD Intel Pentium D 2992 MHz (f64)

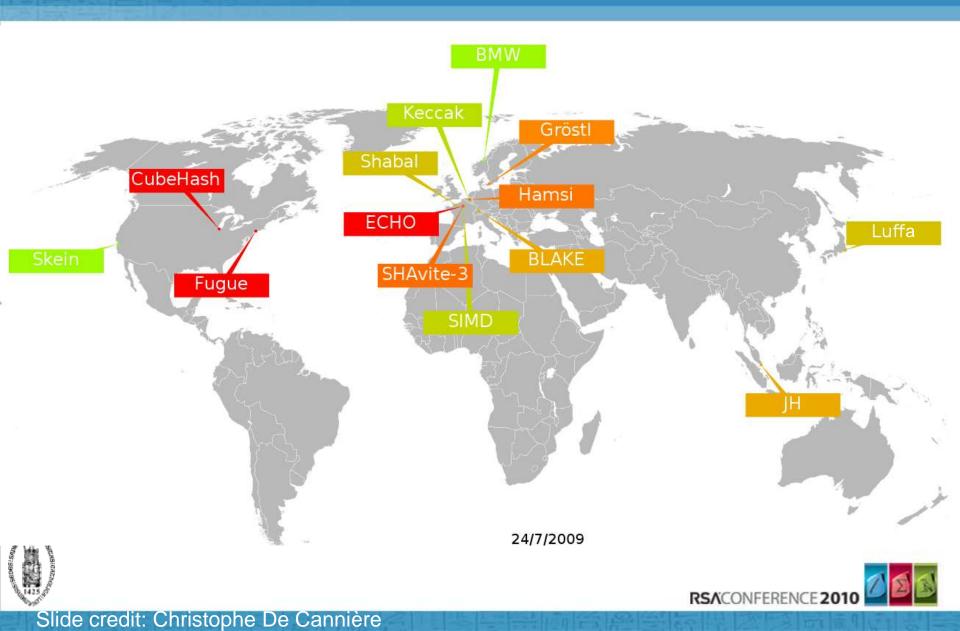

SHA-3 (bits and bytes)

NIST AHS competition (SHA-3)


 SHA-3 must support 224, 256, 384, and 512-bit message digests, and must support a maximum message length of at least 2⁶⁴ bits


The Candidates


The Candidates


Preliminary Cryptanalysis

End of Round 1 Candidates

Round 2 Candidates

Iteration modes

 Wide pipe (7): BMW, Echo, Fugue, Grøstl, JH, Keccak, Simd

- Skein has both wide and narrow pipe

- Haifa:
 - Echo, Shavite-3
 - Variant: Skein

Compression function

- Block cipher based
 - Davies-Meyer: Shavite-3, Skein
 - Miyaguchi-Preneel variant: BMW
 - Other: Shabal
- Permutation based
 - Sponge: Hamsi, Keccak
 - Sponge variant: Luffa
 - Other: Echo, Grøstl, JH

Bits and bytes

- SPN (9)
- Balanced Feistel: JH, Shavite-3, Skein
- Unbalanced Feistel: Blake, SIMD
- S-boxes and diffusion (7)
 - AES-round function (8x8): ECHO, Shavite-3 (benefit from Intel AES instruction)
 - AES-inspired (8x8): Grøstl, Fugue
 - 4x4: JH, Hamsi, Luffa
- Arithmetic/logic (7)
 - ARX (addition/rotation/xor): Blake, BMW, CubeHash, Skein
 - AN (and/not): Keccac, Shabal
 - ANO (and/not/or): SIMD

• Security:

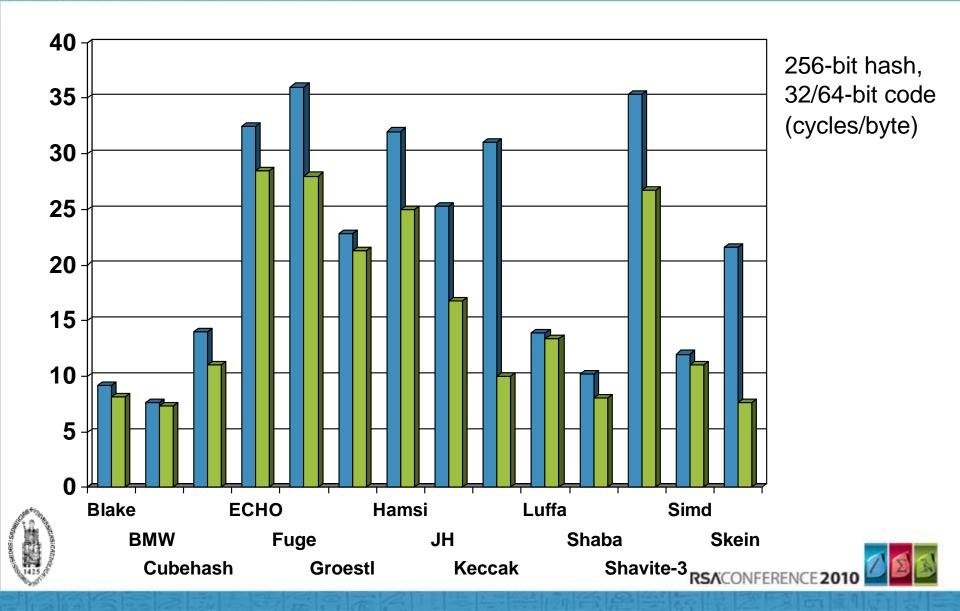
- controversy around pseudo-collision attacks and memory requirements
- proofs have not helped much to survive

• Performance: roughly as fast or faster than SHA-2

- tunable security/performance tradeoff: nominal parameters?
- large memory (> 100 bytes) may be a problem for small devices
- can we exploit 64 or 128 cores? Intel AES instruction?

14 Round 2 candidates

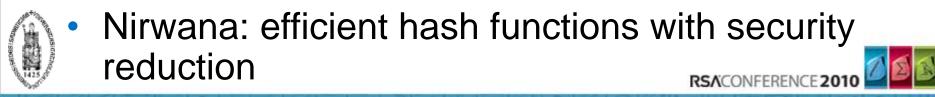
- most are wide-pipe designs or sponge-like designs
 - two main types: AES-based and AXR (addition/xor/rotate)



Security: SHA-3 Zoo http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

	<u>Bookmarks</u> <u>T</u> ools <u>H</u> elp						
<	🕜 (🗋 http://ehash.iaik.tugraz.at/	/wiki/The_SHA-3_Zoo			습 •	Google Google	
Most Visited 🌮 Start	💿 Bart 🏧 P <u>ঌ</u> DS 🌐 🛵 ★ 🛛 🖲	KLk 🛃 🛞 K	Log 📃 Kaart ၇ 💿 wmail	Mif 📄 IFS 🗋 DA 🛛	🖸 IC 🗋 BSCW 🌐 P 📢	🖡 FSa 📄 mob 🔜 ECII	😽 Win Secr
The SHA-3 Zoo - Th	e ECRYPT Hash Fu 🚸						
	article edit history					🔔 Log in	n / create account
ODVOT II	The SHA-3 Zoo						
CRYPT II	1110 01 # (0 200	100 MANY NO 11 MAY 1			an a chronourae ine inventor	1.00 M	
vigation The eHash Main Page Hash Function Zoo	overview of design and cryptanalysis of page, we also collect hardware implen The idea of the SHA-3 Zoo is to give a g to NIST. However, we categorize the cry	nentation results of the good overview of cryptar	candidates. Another categori nalytic results. We try to avoid eir impact from very theoretic	zation of the SHA-3 submi additional judgement whito practical attacks. A deta	ssions can be found here ether a submission is bro iled description is given ir	e d ² . Iken. The answer to this n Cryptanalysis Categor	question is left ies.
Recent changes Random page Help earch Go Search olbox	At this time, 56 out of 64 submissions i into Round 2 2. The following table should give a first in function pages. A description of the ma Recent updates of the SHA-3 Zoo 7 New: Round 2 tweaks for all candidate	mpression on the rema ain table is given here. s 🗗	ining SHA-3 candidates. It sh				
Recent changes Random page Help earch Go Search olbox What links here	into Round 2 &. The following table should give a first in function pages. A description of the ma Recent updates of the SHA-3 Zoo P	mpression on the rema ain table is given here.		nows only the best known	attack, more detailed rest		
Recent changes Random page Help earch Go Search olbox What links here Related changes Upload file	into Round 2 &. The following table should give a first in function pages. A description of the ma Recent updates of the SHA-3 Zoo P	mpression on the rema ain table is given here. s 🗗	ining SHA-3 candidates. It sh	nows only the best known Best Attack on Main	attack, more detailed resu Best Attack on other		
Recent changes Random page Help earch Go Search olbox What links here Related changes Upload file Special pages	into Round 2 &. The following table should give a first in function pages. A description of the ma Recent updates of the SHA-3 Zoo P	mpression on the rema ain table is given here. s & Hash Name	ining SHA-3 candidates. It st Principal Submitter	nows only the best known Best Attack on Main	attack, more detailed resu Best Attack on other		
Recent changes Random page Help earch Go Search olbox What links here Related changes Upload file Special pages Printable version	into Round 2 &. The following table should give a first in function pages. A description of the ma Recent updates of the SHA-3 Zoo P	mpression on the rema ain table is given here. Is P Hash Name BLAKE	ining SHA-3 candidates. It st Principal Submitter Jean-Philippe Aumasson	nows only the best known Best Attack on Main	attack, more detailed resu Best Attack on other		
Recent changes Random page Help earch Go Search Obox What links here Related changes Upload file Special pages Printable version	into Round 2 &. The following table should give a first in function pages. A description of the ma Recent updates of the SHA-3 Zoo P	mpression on the rema ain table is given here. Is P Hash Name BLAKE Blue Midnight Wish	ining SHA-3 candidates. It st Principal Submitter Jean-Philippe Aumasson Svein Johan Knapskog	nows only the best known Best Attack on Main NIST Requirements	attack, more detailed resu Best Attack on other		
Recent changes Random page Help earch Go Search Obox What links here Related changes Upload file Special pages Printable version	into Round 2 &. The following table should give a first in function pages. A description of the ma Recent updates of the SHA-3 Zoo P	mpression on the rema ain table is given here. Is Hash Name BLAKE Blue Midnight Wish CubeHash	Principal Submitter Jean-Philippe Aumasson Svein Johan Knapskog Daniel J. Bernstein	nows only the best known Best Attack on Main NIST Requirements	attack, more detailed resu Best Attack on other		
SHA-3 Zoo Recent changes Random page Help earch Go Search What links here Related changes Upload file Special pages Printable version Permanent link	into Round 2 &. The following table should give a first in function pages. A description of the ma Recent updates of the SHA-3 Zoo P	mpression on the rema ain table is given here. Is P Hash Name BLAKE Blue Midnight Wish CubeHash ECHO	Principal Submitter Jean-Philippe Aumasson Svein Johan Knapskog Daniel J. Bernstein Henri Gilbert	nows only the best known Best Attack on Main NIST Requirements	attack, more detailed resu Best Attack on other		

Performance of hash functions [Bernstein09] http://bench.cr.yp.to/ebash.html



- an open competition such as SHA-3 is bound to result in new insights between 2009-2012
- only few of these can be incorporated using "tweaks"
- the winner selected in 2012 will reflect the state of the art in October 2008
- nevertheless, it is unlikely that we will have a SHA-4 competition before 2030

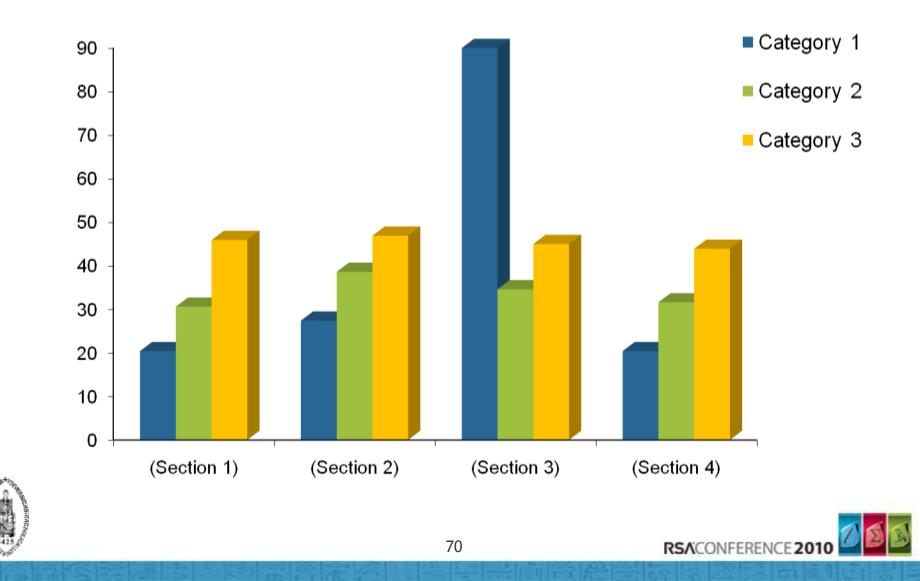
- SHA-1 would have needed 128-160 steps instead of 80
- recent attacks: cryptographic meltdown but not dramatic for most applications
 - clear warning: upgrade asap
- theory is developing for more robust iteration modes and extra features; still early for building blocks

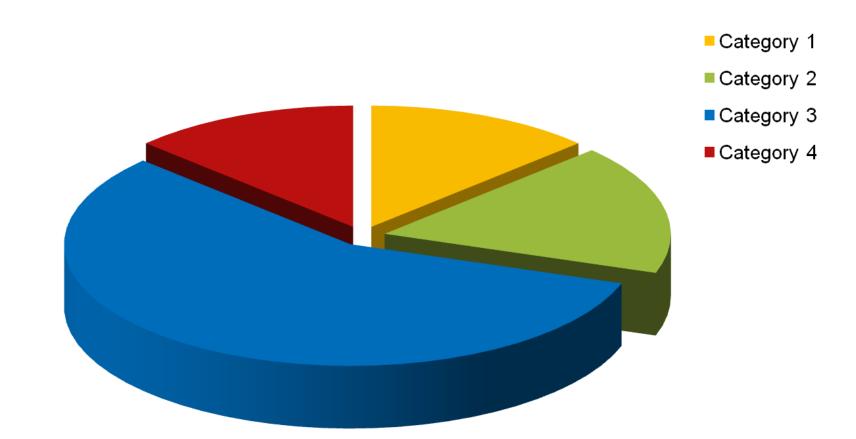
The end Thank you for your attention

- Your talking point bullet text here
- Your next bullet point talking text here
- Third talking point, etc.

RSACONFERE

Your Headline Here (Title Caps)

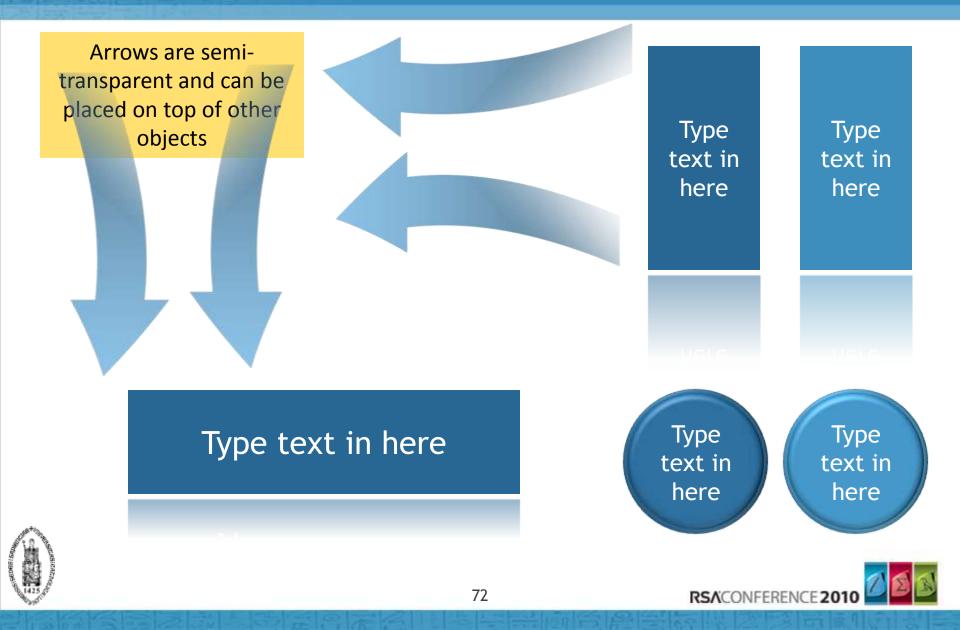



RSACONFERENCE 201

69

Your Headline Here (Title Caps)

Your Headline Here (Title Caps)



RSACONFERENCE

Useful Art - Copy, paste, and resize as needed

Divider Slide (section one title here, and so on)